Journal of Organometallic Chemistry, 156 (1978) C43–C46 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

PHOSPHINE INDUCED REDUCTIVE ELIMINATION REACTIONS :

SYNTHESIS OF RUTHENIUM(0) FLUOROPHOSPHINE COMPLEXES

FROM RUTHENIUM(II) HYDRIDE PRECURSORS

ABDUL-RAZZAK AL-OHALY, ROBERT A. HEAD and JOHN F. NIXON, *

School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ (Great Britain)

(Received June 23rd, 1978)

Summary

The zerovalent ruthenium complexes $Ru(PF_2NMe_2)_5$, $Ru(PF_2NC_4H_8)_5$, $Ru(PF_3)_5(PPh_3)_2$, and $Ru(PF_3)_4(PPh_3)$ are readily obtained by reductive elimination of acetic acid from $RuH(CO_2Me)(PPh_3)_3$ by treatment with the appropriate fluorophosphine

Oxidative addition and reductive elimination reactions are key steps in a number of homogeneous catalytic processes [1-6]. Recently Cole-Hamilton and Wilkinson [7] showed that alkane elimination from alkyl hydridotriphenylphosphine complexes of ruthenium(II) involves abstraction of an *ortho*-hydrogen of a phenyl ring on phosphorus by the alkyl group. In contrast to earlier reports [8,9], the reaction of $RuH_2(PPh_3)_4$ with ethylene does <u>not</u> give the zerovalent $Ru(PPh_3)_3(C_2H_4)$ complex. Instead a hydrido *ortho*-metallated phosphine complex of ruthenium(II) is formed, although with butadiene and pent-1-ene the zerovalent $Ru(PPh_3)_3(diene)$ (diene = butadiene, penta-1,3-diene) complexes are formed [10].

In view of the report that $Ru(CO)_3(PPh_3)_2$ is obtained by prolonged treatment of $RuH(CO_2Me)(PPh_3)_3$ (I) with carbon monoxide [11]. we have studied the phosphine induced acetic acid elimination from (I) as a synthetic route to zerovalent ruthenium phosphine complexes.

A rapid reaction occurs when (I) and PF₃ (1:3) are warmed from -196° C to room temperature and an almost quantitative yield of the zerovalent complex Ru(PPh₃)₂(PF₃)₃, (II), is formed. When the reaction is carried out in benzene at 95° C, the product is Ru(PPh₃)(PF₃)₄, (III). Both complexes are fluxional in solution, exhibiting the typically complex ¹⁹F and ³¹P NMR spectra expected for these types of [AX₃]₃ and [AX₃]₄ spin systems (A = phosphorus, X = fluorine) with further coupling to the PPh₃ ligands [for (III) $\phi_{\rm F} = 4.3 \text{ p.p.m.}; \delta_{\rm PF_3}$ (rel. TMP) = 3.9 p.p.m., $\delta_{\rm PPh_3} = 96.4 \text{ p.p.m.},$ $^2J(\rm PP') = 65.9 \text{ Hz}; J(\rm PF') + 2J(\rm PF') = 1228 \text{ Hz}, J(\underline{\rm PPh_3F}) = 2.5 \text{ Hz}.$ For (IV) $\phi_{\rm F} = -1.2 \text{ p.p.m.}, \delta_{\rm PF_3} = -6.3 \text{ p.p.m.}, \delta_{\rm PPh_3} = 10.2 \text{ p.p.m.},$ $J(\rm PF) + 3J(\rm PF') = 1235 \text{ Hz}.$

 $RuH(CO_2Me)(PPh_3)_3 \xrightarrow{PF_3} Ru(PPh_3)_2(PF_3)_3 \xrightarrow{PF_3} Ru(PPh_3)(PF_3)_4$ (I)
(II)
(III)
(III)
(III)

RuH(CO₂Me)(PPh₃)(PF₂NMe₂)₃

(IV)

Treatment of (I) with PF₂NMe₂ under mild conditions shows that the first step in these reactions is phosphine ligand exchange and RuH(CO₂Me)(PPh₃)(PF₂NMe₂)₃ is formed in which the acetate group is mono-dentate. At higher temperatures acetic acid elimination occurs and the white, air stable zerovalent complex Ru(PF₂NMe₂)₅. (IV), is formed. The ¹H NMR spectrum of (IV) shows the expected broad resonance at τ . 7.3, while the ¹⁹F and ³¹P NMR spectra show the expected complexity for an [AX₂]₅ spin system showing that the molecule is stereochemically non rigid [Q_F = 24.9 p.p.m., J(PF) + 4J(PF') = 1014 Hz, $\delta_p = -39.5$ p.p.m.]. The mass spectra of (IV) shows a parent ion at m/e = 667 and ions corresponding to

C44

the stepwise loss of PF₂NMe₂. The pentakis(piperidinodifluorophosphine)ruthenium(0) complex Ru(PF₂NC₄H₈)₅, (V), was made by a similar route [$\phi_{\rm F}$ = 24.0 p.p.m., $\mathcal{J}(\rm PF)$ + 4 $\mathcal{J}(\rm PF')$ = 1018 Hz, $\delta_{\rm p}$ = -34.5 p.p.m.].

The syntheses of $Ru(PF_2NMe_2)_5$ and $Ru(PF_2NC_4H_5)_5$ are of interest in view of the very recent report [12] of the isolation of $Fe(PF_2NMe_2)_5$ in 14% yield by co-condensation of iron vapour with PF_2NMe_2 .

We find evidence for acetic acid elimination from (I) on treatment with P(OMe)₃ in methanol. However, the resulting zerovalent complex appears to undergo protonation rather readily and this has been noted by other workers on related systems [13,14]. The cage phosphite $P(OCH_2)_3CMe$, on the other hand, reacts with (I) to give RuH(CO₂Me)-[P(OCH₂)₃CMe](PPh₃) while Ph₂PCH₂CH₂PPh₂ (dppe) gives RuH(CO₂Me)-(dppe)₂, (VI). Complex (VI) readily reacts with chlorinated solvents to give RuHCl(dppe)₂ and with carbon monoxide and phosphine ligands to give complexes of the type RuH(CO₂Me)(dppe)₂L [L = CO, PF₃, PF₂NMe₂, $P(OMe)_3$, $P(OCH_2)_3CMe$] rather than via elimination of acetic acid and formation of Ru(dppe)₂L, related to the known complexes M(dmpe)₂P' (M = Fe, Ru) reported recently [15].

Acknowledgement

We thank S.R.C. and the Saudi Arabian Governemt for financial support.

References

- L. Vaska, Accounts of Chem. Research, 1 (1968) 335;
 J. Amer. Chem. Soc., 93 (1971) 6671.
- 2 J. Halpern, Accounts Chem. Research, 3 (1970) 386.
- 3 J.P. Collman, Accounts Chem. Research, 1 (1968) 136.
- J.P. Collman and W.R. Roper, Advan. Organometal. Chem., 7 (1968)
 54.
- 5 B.L. Shaw and R.E. Stainbank, J. Chem. Soc. (A), 3716 (1971).
- 6 E.L. Muetterties and P.L. Watson, J. Amer. Chem. Soc., <u>98</u> (1976)
 4665; J. Chem. Soc. (Dalton), 1995 (1976).
- 7 D.J. Cole-Hamilton and G. Wilkinson, J. Chem. Soc. (Dalton), 1995 (1976).
- 8 S. Komiya, A. Yamamoto, and S. Ikeda, J. Organometal. Chem.,
 42 (1972 C65.

- 9 S.Komiya and A. Yamamoto, Bull. Chem. Soc. Japan, 69 (1976) 2553.
- 11 G. Wilkinson, J.D. Rose, J.O. Gilbert and R.P. Richardson, J. Chem. Soc. (A), 2610 (1969).
- 10 D.J. Cole-Hamilton and G. Wilkinson, Nouveau J. de Chimie, 1 (1977) 141.
- 12 M. Chang, R.B. King, and M.G. Newton, J. Amer. Chem. Soc., 100 (1978) 998.
- 13 A.D. English, S.D. Ittel, C.A. Tolman, P. Meakin, and J.P.Jesson, J. Amer. Chem. Soc., 99 (1977) 117.
- 14 S.D. Ittel, personal communication.
- 15 S.D. Ittel, C.A. Tolman, A.D. English, and J.P.Jesson, J. Amer. Chem. Soc., 98 (1976) 6073; J. Amer. Chem. Soc., in the press.